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When a lightly damped fluid resonator is forced near its fundamental frequency, the 
most usual response is one in which the fluid oscillates in the corresponding eigenmode 
with an amplitude response similar to that of a Duffing oscillator. Examples are the 
sloshing of a horizontally oscillated tank or acoustic oscillations in a resonator of 
general shape. However, multiple eigenmodes can be excited if the spectrum is either 
commensurate or degenerate and both acoustic resonance and the sloshing of shallow 
water in a nearly square container exemplify both these exceptional cases. In this 
paper we investigate how the response of such systems depends on geometry and 
dispersion. 

1. Introduction 
1.1. Preamble 

When any mechanical system is subjected to a small oscillatory driving force, a reso- 
nant response will occur whenever the difference between the frequency of the driving 
force and a natural frequency, usually the fundamental, tends to zero. This frequency 
difference is called the detuning. In systems with several degrees of freedom, the 
response can be quite a complicated function of the detuning, typically taking the 
form of coupled damped oscillators when dissipation limits the amplitude or of cou- 
pled Duffing oscillators when nonlinearity is the limiting mechanism. For continuous 
systems such as fluids, the situation is further complicated by the dependence on the 
geometry. However, all resonances, whether in finite- or infinite-dimensional systems, 
can be attacked by exploiting the smallness of the forcing amplitude and the detuning. 
Our aim in this paper is to use asymptotic methods to shed light on some interesting 
cases of fluid resonance that are primarily limited by nonlinearity and have received 
little attention theoretically or experimentally. Because the subject of fluid resonances 
has quite a complicated history, we can only put our work in context by subjecting 
the reader to this regrettably lengthy introduction. 

Those fluid resonances that have received most theoretical attention concern 
( a )  the sloshing of liquids in a horizontally oscillated, rectangular tank; 
(b)  one-dimensional, radially symmetric or spherically symmetric acoustic oscilla- 

tions in a closed resonator. 
These two situations can be related to each other when the liquid in (a)  is sufficiently 
shallow. In all the cases that have been considered, the resonant response is best 
classified according to the distribution of the natural frequencies of the system. 
Thus, in case (a), whenever the liquid depth is comparable to or greater than the 
horizontal dimensions of the resonator, implying that the system usually only contains 



318 H .  Ockendon J .  R. Ockendon and D .  D .  Waterhouse 

-4 -2 0 2 4 
A 

FIGURE 1. Duffing-type response showing amplitude against frequency for soft-spring behaviour. 

simple non-commensurate eigenvalues, the undamped periodic resonant response is 
analogous to that of the classical Duffing oscillator 

~ + ( 1 + ~ 2 / 3 ) ~ + ~ 3  E <  I, ( L l a )  

for which 

x - &“A cos t + . * . where i A  + :A3 = 1. (l.lb) 

Here 3, is the detuning and E is the forcing amplitude, and the soft-spring response 
( E  > 0) is illustrated in figure 1. This ‘deep-water’ result was obtained in the pioneering 
work of Moiseyev (1958). It describes the simplest resonant behaviour that a fluid can 
exhibit, because the non-commensurability of the spectrum means that the lowest- 
order response, although nonlinear in amplitude, is proportional to a single normal 
mode. This scenario also encompasses acoustic resonance in a closed resonator as in 
(b )  above when the geometry is such that the spectrum is non-commensurate; indeed, 
for such oscillations in a sphere or in a cylindrical wedge, the nonlinear response has 
been shown to comprise only a single mode by Chester (1991) and Ellermeier (1994) 
respectively. 

However, the response is quite different when any of the natural frequencies are 
commensurate or degenerate (i.e. with more than one corresponding normal mode) 
and conceptually, the next level of complexity occurs when there are just a finite 
number of commensurate, simple eigenvalues. Then, as shown in Can & Askar (1990), 
Peake (1993) and Waterhouse (1995), the resonant response is analogous to that of 
a coupled system of Duffing oscillators. As discussed in Ockendon et al. (1993), a 
similar response in the form of a finite combination of modes may still occur to lowest 
order even when there are an infinite number of commensurate eigenvalues, just as 
long as there are also some non-commensurate ones as well; this happens because 
nonlinearities in the field equations can prevent higher eigenmodes from being excited, 
despite their frequencies being commensurate with the driving frequency. However, 
the most extreme case of commensurability occurs in (b)  above when the resonator is 
a cylinder such as an organ pipe. As shown in the original paper of Chester (1964), the 
fact that the spectrum now comprises the integers means that when the gas is oscillated 
in the direction of the axis of the cylinder near the fundamental frequency, all the 
higher modes can be simultaneously excited. These modes form a complete set and 
hence much more complicated waveforms can appear than with finite combinations 
of normal modes. In particular there is the possibility of discontinuous solutions that 
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include shock waves when the detuning R. is sufficiently small. Indeed this is apparent 
from the solution of ‘Chester’s equation’ (Chester 1964, 1968) 

sin t Af” + ( y  + 1)f’f” = ----, 
71 

which describes the pressure, f’(t), at one end of the resonator, y being the ratio of 
specific heats. 

This leaves one other class of problems, namely those in which the spectrum has 
some degenerate natural frequencies with independent corresponding eigenmodes, 
and this is the situation with which we will mainly be concerned in this paper. The 
effect of such degeneracy is relatively easy to describe for case (a) above and we 
will see in $1.3 how it engenders strong multi-dimensional responses in systems that 
are very nearly one-dimensional. However, the situation is more complicated when 
the spectrum is also nearly commensurate and, in order to encompass this situation, 
we will find it most convenient to describe our results in terms of the solution of 
a canonical nonlinear, non-dispersive scalar wave equation that will apply to both 
acoustic and shallow sloshing resonances. We will describe this equation later in the 
introduction and the relevance of its solutions to case (a) will then be explained by 
modifying its predictions to account for dispersi0n.t 

Most of the remainder of this introduction will be devoted to describing the 
models within which we propose to study multi-dimensional degenerate resonance. 
We will assume throughout that the damping is such as to allow us to only consider 
periodic responses that are synchronous with the forcing. Also, from the start, we 
will work with the dimensionless variables used in Ockendon & Ockendon (1973) 
and Ockendon et al. (1993), and the crucial parameters E,R. and v will always be 
associated with the forcing amplitude, the detuning and the geometrical imperfections 
respectively. 

1.2. Uni-modal response 
1.2.1. Deep water sloshing 

The analysis of this case is predicated on the fact that the scaling needed to obtain 
the solution (l . l) ,  as E -+ 0, is x - O ( E ~ / ~ )  with the detuning being of O ( E ~ / ~ ) .  Now 
the sloshing problem for irrotational motion in a horizontally oscillated tank is 

v2q5 = 0, (1 .3~)  

with the conditions 

(1.3b) 

q + (1 + 20) tanh h [h + + E  (+x2 + 4y2 + qL2)] = 0, (1.3~) 

on the free surface z = q. Here, E << 1 is the ratio of the amplitude of the forcing 
to a typical tank dimension L, the dimensional undisturbed water depth is hL, the 
dimensional velocity potential is &wL2+, the dimensional surface elevation is  EL^ and 
the tank is oscillated at a frequency o near its fundamental frequency oo so that 

(1.4) o2 = ( I  + &))a;, 
t This bridging between dispersive and non-dispersive resonances has been discussed for 

non-degenerate spectra by Chester (1968), Ockendon & Ockendon (1973) and Ockendon, Ock- 
endon & Johnson (1986). 
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and the normal velocity $,, is proportional to sint on the walls of the tank. For 
uniqueness, we also need to prescribe the mean elevation so that 

where D is the domain of the free surface. We now follow the scalings suggested by 
Moiseyev (1958) and consider the regime 20 = 2 d ~ ~ / ~  (Ad - 0(1), the suffix d denoting 
deep water) and employ the expansions 

(p (1.6a) 
q 'v & 4 3  qo + E - ~ / ~ v ~  + q2 + . . . , (1.6b) 

to find that (po is just A times the normalized fundamental eigenmode proportional 
to sin ( t  + O ) ,  where 0 is the phase shift. Then, by applying the Fredholm Alternative 
to the problem for 42, we find that sin 0 = 0 and 

(1.7) 

for some constants a and p, where the phase 0 = 0 or .n is chosen so that A > 0, i.e. 
the response is qualitatively as in (1.1). 

We will subsequently be especially interested in the case when the tank is a cuboid 
of non-dimensional depth h, length n and breadth b for which ~ 0 '  = ( g / L )  tanh h and 

& = sint on x = --Ecost,.n - &cost, ( M a )  
4z = O  on z = -h, (1.8b) 
q5,, = 0 on y =O,b, ( 1 . 8 ~ )  

&-=I3 4o + ~ - ~ / ~ 6 ~  + 42 + . . . , 

a&A + PA3 = cos 0, 

and in this case 

40 = Acos x cosh(z + h) sin ( t  + O ) ,  

CI = n/(4cosh h), p = (n/4)coth hH(h)  and H ( h )  is given by (A 1) in the Appendix.? 

(1.9) 

1.2.2. Acoustic resonators 

As discussed in Ockendon et al. (1993), a suitable reduction of the equations of 
two-dimensional gas dynamics leads to the prototype model for this class of resonators 
as the nonlinear wave equation 

(1.10) 

where we are given Neumann data as in (1.8a). The non-dimensionalization and the 
parameters E, A0 are as before, and y is the ratio of specific heats. Thus we can again 
adopt the asymptotic expansions cp - E - ~ / ~  cpo + ~ - ' / ~ 4 1  + 4 2  + ..., l o  = E ~ / ~ A ,  and 
find that cpo is the fundamental eigenmode with an amplitude satisfying an equation 
identical to (1.7) with Ad replaced by Aa. Indeed, such a statement could be made 
about any weakly nonlinear wave equation with quadratic nonlinearity. However, 
these scalings cannot be applied uniformly in a variety of different limits. In particular, 
(1.7) will not be uniformly valid when the shape of the tank or resonator is close 
to one in which the lowest eigenfrequency is degenerate or is close to one with a 
commensurate spectrum. We now consider these cases in turn. 

t This response exhibits a change from soft to hard spring behaviour around h z 1.06, causing 
H to change sign. The behaviour near this critical depth has been discussed by Waterhouse (1994). 

cpxx + cpyy - cptz - Aocptt = E [2cpxcpxz + 2cpycpPyt + (Y - 1 ) c p d c p X X  + cpyy)]  7 
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1.3. Multi-dimensional responses 
1.3.1. Deep water sloshing 

An obvious configuration in which to study sloshing when the fundamental is 
nearly degenerate is the nearly square tank problem (1.3), ( lS),  (1.8) when b is close 
to n. If b is any constant not a multiple of n and we allow the breadth of the tank to 
vary slightly with x, we still retrieve (1.9) to lowest order and the solution is virtually 
one-dimensional. However, when we replace (1.8~) by 

4y = V O ~ ~ ~ U ’ ( X )  on y = n [I + voa(x)], (1.11) 

where vo is a small parameter characterizing the breadth variations, we find that a 
new phenomenon occurs when vo = v ~ E ’ ’ ~  (Vd - O(1)). Now 40 has to be a linear 
combination of the phase-shifted eigenmodes 

40 = ( A  cos x sin(t + 0,) + B cosy sin(t + 63,)) cosh ( z  + h).  (1.12) 

The all-important criterion that determines the amplitudes A and B and the phases 
19i is again found by solving for 4, and then insisting that the problem for 4 2  has 
a solution with period 271 in t and it can only be satisfied when B # 0. Indeed, 
as shown in Waterhouse (1993, the Fredholm Alternative implies the solvability 
conditions sin O1 = sin 63, = 0 and 

4 
- tanhh = [vdL(h)A +&Asinhh+H(h)A3 +J(h)AB2] cosO1 +vdK(h)BcosO2, (1.13~) 

O =  [vdM(h)B+IdBsinhh+H(h)B3 +J(h)BA2] ~ o s O ~ + ~ ~ K ( h ) A c o s 8 ~ ,  (1.13b) 

where the coefficients in (1.13) are given in the Appendix and Oi = 0 or n are chosen 
as shown in figure 2, so that A , B  > 0. We can check this by recalling that when the 
tank breadth is not commensurate with its length, the leading-order transverse mode 
is no longer resonant and we should return to (1.9). This can be seen by letting the 
average of the geometric imperfection tend to infinity so that, from (A5) and (1.13b), 
we find B -+ 0 and hence A satisfies an equation similar to (1.7). We note that we 
can interpret (1.13) in terms of a response diagram as in figure 2, where we have 
considered a fixed geometric variation (Vd = 2) and shown, in the case a’(x) = 2x 
(which will later be seen to be a useful special case) and h = 1.5, the variation in 
amplitude as the detuning, Ad, varies. Similar response pictures can be found for other 
values of vd and other a(x). This picture contrasts with figure 1 in that that there 
are now two branches due to the interaction between the two modes, reflecting the 
degeneracy of the first eigenvalue. For Vd non-zero, the perturbed eigenvalues are at 

71 

vd 
Ad = v { K ( h )  2 sinh h [L2(h) + 4K2(h)]  1’2}, 

as reflected in figure 2, where the choice of parameters gives Ad = 4.6, -5.9. 
The linear coupling terms in (1.13), causing the two distinct branches in figure 2, 

only arise when the tank breadth is approximately 71 and a(x) is non-zero; even if 
we were to oscillate two adjacent vertical walls of the cuboid when either of these 
conditions is violated, we would simply obtain a superposition of two Duffing-like 
responses in each direction. 

1.3.2. Acoustic resonators 
It is when we come to consider resonance for problems with spectra that may be 

both degenerate and commensurate that the nonlinear wave equation (1.10) comes 
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FIGURE 2. Response diagram for deep water when vd = 2, h = 1.5. 

into its own. For, suppose we consider a resonator that is nearly rectangular and 
forced on one face with an amplitude appropriate to the scalings in 61.2.2. Thus the 
boundary conditions are 

cp, = O  on x = O ,  
q, = sint on x = n, 
cp, = O  on y =0, 

(1.144 
( 1.14b) 
(1 .14~)  

(1.14d) cpy = v~--(p,a'(x) on y = -[I + voa(x)l, 

and this corresponds to 00 = ao/L where a; = ypO/po and po and po are the pressure 
and density in the undisturbed gas. We now see that for E = vo = 0, we have a 
spectrum that not only contains the integers but can also be degenerate when ho/L 
is an integer multiple of n. However, whereas for (1.3), ( lS ) ,  (1.8) and (1.11) it was 
easy to retrieve the single mode response (1.9) as we moved away from degeneracy 
by letting vd + co, the dependence of the solution of (l.lO), (1.14) on vo is much more 
subtle as we will see shortly. In fact, the simplest non-trivial case we can consider 
for ho/L = O(1) is when vo = ve'j2 (v - O(1)) so that the imperfection has only a 
second-order effect. Then we can expand cp - E - ' / ~ ( P o  + cpl +. . . in the detuning range 
20 = A&'/* (A  - 0(1)), and, writing cpo = A(x,y,t) and cpl = B ( x , y ,  t ) ,  the key criterion 
analogous to (1.13) is that the linear problem for perturbations to the eigensolution 
satisfying 

h0 h0 
L L 

Ax, + A,, = Att, 
A ,  = O  on x=O,n,  

(1.15a) 
(1.15b) 

(1.15~) h0 A ,  = O  on y=O,--, 
L 

namely 

B x x  + B y ,  - Brr = A& + 2A,A,, + 2AyA,, + (y - I )A~A,~ ,  ( 1 .16~)  
B,  = O  on x =0 ,  (1.16b) 
B, =sin t  on x = n, (1.16~) 
By = O  on y =0 ,  (1.16d) 

on h0 y = -  
L'  

(1.16e) 
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FIGURE 3. ‘Shock diagrams’ (where shocks occur in the shaded region) for successive 

approximations to the function a’ (x )  = 2x for y = 1.4. ( a )  N = 2, ( b )  N = 4, (c) N = 6. 

should have solutions periodic in t with period 271. We now have the challenging task 
of using the solvability condition for B in (1.16) to find A and this is our objective 
in 42; it is only easy to do this in the purely one-dimensional case (v  = 0) when 
A = f ( t  + x) + f ( t  - x) and the solvability condition on (1.16) retrieves (1.2) for the 
determination of f .  

However, as shown in Ockendon et al. (1993), there is one parameter regime in 
which a relatively straightforward asymptotic analysis can be made and that is when 
ho/L is small; this situation corresponds to a ‘thin’ resonator, where the restriction 
vhi /L2  << 1 allows the equations (l.lO), (1.14) to be integrated across the breadth of 
the resonator. This leads to a hierarchy of one-dimensional models which show an 
extreme sensitivity to the size of v ,  even though, in general terms, the likelihood of 
shocks decreases as the cross-sectional area variations, and hence the probable non- 
commensurability of the spectrum, increases. For these thin resonators the following 
two parameter regimes emerge in Ockendon et al. (1993): 

( a )  v << E - ’ / ~ .  Here, the regime where discontinuous solutions occur is described 
by ‘fingers’ in the (A, v)-plane within which shocks may be sustained, and the widths 
of these fingers diminish as v increases (see Ockendon et al. 1993, figure 3, which 
is similar to figure 3 above which we will refer to as a ‘shock diagram’). As in the 
discussions leading to (1.15), the analytical expression of this statement is only at 
all easy when v - O(1) in which case we can expand cp to derive one-dimensional 
versions of (1.15) and (1.16) and show that A = f(t + x) + f ( t  - x) where (1.2) is 
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(1.17) 
1 

A f ”  + ( y  + 1)f’f’’ + - sin t = [a’(z) - a’(n - z)]f’(t + 2z)dz. 
TL 

Although (1.17) can only be solved numerically in general, the emergence of narrow 
shock regimes or fingers as v increases can be discerned analytically in the special 
case when a’(x) is linear in x (so that the resonator is parabolic), as described 
in Ockendon et al. (1993). When a’(x) = 2x, the right-hand side of (1.17) is vf ( t )  
and it is relatively easy to carry out an asymptotic analysis as v + GO. This gives 
f - sin t/n(v + A) unless -v/A is the square of an integer. Near these ‘subresonant’ 
straight lines in the shock diagram lie the ‘fingers’ within which the response does 
not tend to a single mode as v -+ co. The form of the response within these fingers 
is still unclear except in certain special cases; all that is certain is that the amplitude 
is relatively large (for example, v1I3 near the first finger ,I + v = 0) and that shock 
solutions can be displayed explicitly in the case when a(x) has just a few Fourier 
components (Keller 1977; Chester 1994). In fact, if we approximate a’(x) = 2x by 

writing a(x) = C[4(-l)”/n2] cosnx for N = 2,4,6, an explicit calculation reveals 

figures 3(a)-3(c) respectively. Special cases in which a(x) is harmonic have been 
considered in Chester (1994), in which figure 3(a, b) first appeared. The area between 
solid lines shows where shock solutions occur and the appearance of new fingers is 
associated with the sub-resonant lines. 

(b) v - O ( E - ~ / ~ ) .  In this regime we are so far away from the one-dimensional 
scenario that it is easier not to think in terms of a generalized Chester’s equation such 
as (1.17) but rather in terms of the commensurability of the spectrum. It appears 
from the discussions in Ockendon et al. (1993) that only when the nth eigenfrequency 
w, satisfies Iw, - n(  << &‘I2 is there a possibility of shocks and hence that there is 
likely to be a generic unimodal response unless these strong geometric variations are 
very special. 

Although the parameter regime ho << L precludes any obvious configurations in 
which the fundamental eigenfrequency is degenerate, the results that we will derive 
for ‘non-thin’ resonators near degeneracy in $2 will reveal an interesting similarity 
with the scenario illustrated in figure 3. 

N 

fl= 1 

1.4. The relationship between shallow water sloshing and acoustic resonance 
As explained in the penultimate paragraph of $1.1, we will only be able to see the 
relevance of our model (1.10)’ (1.14) to sloshing problems if we can incorporate the 
effects of dispersion into its predictions. Thus, before we go into a more detailed 
discussion of (1.15)’ (1.16)’ let us make some comments about its relationship with the 
shallow water problem; this will highlight the role of (1.15), (1.16) as the basic model 
for multi-dimensional non-dispersive resonance, to which terms can be appended 
later to account for dispersion. We can see this in the case of the rectangular tank 
modelled by (1.3), ( lS),  (1.8) and (1.11) because when we use the shallow water 
scalings h = K E ’ / ~ ,  A,, = A E ’ / ~ ,  vo = v&lI2, z = and = ~ - ~ / ~ i j  (see 
Ockendon et al. 1986) in these equations, we find the shallow water model 

(1.18a) 

$,=-P2sint on x=--Ecost,.n-&cost, (1.18b) 

4 = 

112 - 
$22 = --E ( 4 x x  + $,,), 
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$, = O  on y = o ,  (1.18c) 

(1.18d) 

d5 = O  on z = - K ,  (1.18e) 

where b has been replaced by ho/L. The parameter K will hereafter denote the measure 
of dispersion in the problem. The free surface conditions are 

(1.18j) $5 = E 1 l 2 q t  + &$,rx + &$,fj,, 

r + K (1 + [A - $c2])  (6, + ; [& + {$: + $;}I) = 0, (1.18g) 

on Z = ~ ‘ / ~ f j ,  correct to O(E).  Then, expanding and ij as 4 = +o + E ~ / ~ + ~  + ~4~ +. . . 
and ij = q o + ~ 1 / 2 q l + ~ q 2 + . . .  , we proceed to solve at each order to find @o = A(x, y, t) 
and q51 = -LA t, (- z + J C ) ~  + B(x ,  y, t) where 

(1.19~) 
( 1.19b) 

(1.19~) h0 A, = O  on y=O,-, 
L 

and 

B,, + By, - B,, = -g4,,,, + (A - $2) A,, 

+2AxAxt + 2AyAyt + At& 
B, = sint on x = O,n, 
By = O  on y =0, 

( 1.20a) 
(1.20b) 
( 1.20c) 

(1.20d) 
h0 h0 

on y = -, L By = VZ [~,a’(x) - A,u(x)] 

which clearly reduce to (1.15) and (1.16) when IC = 0 with y = 2. Equally, following 
the ideas of Ockendon & Ockendon (1973), we can see that when K + 00, the linear 
terms on the right-hand side of (1.20~) dominate so that A,,,, + A,, = 0 which, 
together with (1.19), suggests that we can approximate A by A = A1,o cosxsin(t + 
01) + A O , ~  cosy sin (t + 02). A more detailed analysis is given in $2.4 to show that 
the amplitudes A1,o and AO,J satisfy (1.13) in the limit h -+ 0, so that this deep 
water limit of the shallow water equations matches with the shallow water limit of 
our earlier deep water analysis. We will henceforth regard the effect of dispersion 
on the solution of (l.lO), (1.14) as being to introduce fourth-order derivatives of 
the fundamental eigenmode into the formulation of the problem. In the case of 
purely two-dimensional motion (where the leading-order solution depends on just 
x and t) Ockendon et al. (1986) have shown that this has the effect of removing 
any possibility of shocks. The analysis becomes more and more complicated as K 

decreases because the number of continuous periodic solutions appears to increase 
without bound; when K = 0 there is a unique solution but it is discontinuous 
in a certain detuning range. A similar burgeoning of periodic solutions may be 
expected to occur in the three-dimensional case, but we will not investigate this 
here. 

It is very difficult to model the effects of dissipation realistically in these resonance 
problems, but we instinctively expect viscous damping to ‘round off the large- 
amplitude branches in response diagrams such as figures 1 and 2. We will discuss this 
further in $3. 
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The picture that emerges from all the investigations described above is that acoustic 
and horizontally oscillated sloshing resonators exhibit Duffing-like responses unless 
the fundamental mode is degenerate or there is an infinite number of commensurate 
normal frequencies. This latter situation can only occur for special geometries, such 
as gas in a cylindrical organ pipe, and, when it does occur, there maybe a complicated 
response involving shock waves. A perturbation analysis for thin resonators reveals 
the ease with which this ‘shock’ response can be destroyed by geometric imperfections 
that remove the commensurability of the spectrum. However, there is as yet no analysis 
for resonators which are perturbations of configurations for which the spectrum is 
commensurate and exhibits degeneracy, say in the fundamental. Our model (LlO), 
(1.14) with ho/L = n applies to just such a situation and this is what we will study in 
the next two sections.? 

2. Resonance with nearly commensurate and nearly degenerate spectra 
In this section we will study (l.lO), (1.14), (1.15) and (1.16) with ho/L = n in 

the simple but instructive case when vo = O ( E ’ ’ ~ ) ;  we will leave all embellishments 
concerning other parameter regimes to $3. 

The general periodic solution of (1.15), (1.16) is 

A(x,  y ,  t )  = cos px cos q y ( a , ,  cos jlp,,t + b , ,  sinR,,t), (2.1) 

= p 2  + q2 and p ,  q are integers such that the ,lp,q are non-zero integers. It 

P.4 

where 
is convenient to write A as 

where 

(2.2a) 

are 2.n-periodic plane waves in the (+i,f j)  directions, 
that i2 + j 2  is the square of an integer and each pair (i, j )  is coprime, 

(2.2b) 

( i , j )  denoting all the i , j  such 

we have used the shorthand 

f i , j ( t  k li,jx k k i j y )  = f i , j ( t  + l i jx  + ki , jy)  + f i , j ( t  + k , j X  - ki , jY)  

+ f i , j ( t  - l i jx  + ki , jy)  + f i , j ( t  - l i jx  - ki,jY). 

We will henceforth refer to the f u  as the (i,j)-wavetrain. Thus we can, alternatively, 
write 

Ai,j(x, y ,  t )  = C cos isx cos jsy(a,yi,sj cos S R i , j t  + bsi,,yj sin s,li,jt), (2 .3~)  
00 

s= 1 

where 

(2.3b) 

t A further argument for studying ( l . lO) ,  (1.14) is that it is unlikely that resonators with 
non-planar walls could ever sustain periodic responses including shocks, which would inevitably be 
curved, even if it had an infinite commensurate set of eigenvalues. 
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and d = 2 for ( i ,J )  = (1,O) or (0,l)  or d = 4 otherwise and the fn,, have been chosen 
to have zero mean without loss of generality. We will also find it convenient to have 
a Fourier series representation for a(x), namely 

a(x) = C a, cos nx. 
n=O 

We now make some remarks about the application of the Fredholm Alternative 
to (1.16) using the form (2.2b) for A(x,y,t). For a periodic solution of (1.16) to exist 
we need the forcing in this problem to be orthogonal to the doubly infinite set of 
eigensolutions to the homogeneous problem (1.15). We first multiply (1.16~) by the 
eigensolution cos npx cos mpyG(t’) where 

G(t’) = Cnp,rnp cos (&,mPt’) + dnp,mp sin (Az,rnPt’L 

and clh and d,h are arbitrary constants. We then integrate over the whole domain 
and, using the boundary conditions (1.16b-e) and summing over p, find 

2 r 1‘ 1’ F(x, y, t’) cos npx cos mpy G(t’)dx dy dt’ 
p=l 

for each (n,m), where F(x,y, t) is the right-hand side of (1.16~). Before we can proceed 
any further we need the following result. 

The expressions 

where q = 1,2,. . . and the pairs (ni, mi) are coprime are non-zero if and only if nl = 
n2 = n3 and ml = m2 = m3. The proof is a straightforward case-by-case enumeration 
(see Waterhouse 1995) so we do not give it here. 

Noting that most of the terms in F(x, y, t )  are quadratic in A,  this result states that 
the only terms in F(x, y, t) for the (n, m) set of orthogonality relations (2.5) that do 
not integrate to zero in the left-hand side are those containing only products of A , ,  
(or fn,,). Hence we can replace F in (2.5) by Fn,, where 

Fn,m(x, y, t) = A ( A n , m ) t t  + 2(An,m)x(An,rn)xt + 2(An,rn)y(An,rn)yt 

+(Y - l)(An,m)t(An,m)tt .  

The left-hand side of (2.5) can now be integrated explicitly, and putting c,~,,,,~ = 
cos I,,pt, dnp,mp = sin &,pt and, using the method of $3 of Ockendon et al. (1993) to 
evaluate the sum in the left-hand side of (2.5), we finally find that the fn,, satisfy 

R(x, t’)(-l)Pm cos pnx cos p&,,(t’ - t)dx dt’; (2.7) 
p=l 
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R(x,  t )  = a‘(x)&(x, n, t )  - (4x1 - ao)Ayy(x, 7L t ) ,  (2.9) 

and a0 is the mean value of a(x). 
The set of equations (2.7) will form the basis for all our subsequent discussions. 

Their most interesting feature is the complication caused by the term R(x ,  t )  which 
involves, in general, a coupling between all the A,,j and the Fourier coefficients of 
a(x) and hence the right-hand side of (2.7) contains all the fi,j. For example, we find, 
in the case (n,  rn) = (1,0), that (2.7) gives 

1 .  
‘ e f l , ~  + - sin t = [u’(n - t’) - a’(t’)] Lfi,o(t + 2t’) + . . .]dt’ n 

-: 1” d ( n  - t’)Lf;,l(t + t’) - f;,l(t - t’) + ’ . .Idt’, (2.10) 
n 

where only the first two wavetrains have been included. However, we will later exploit 
the fact that the form of this right-hand side simplifies in three special cases, two of 
which have been already mentioned in $1 : 

(i) when a’(x) is linear in x, i.e. the back wall is parabolic, the equations reduce to 
a set of ordinary differential equations where, for example, (2.10) reduces to 

1 .  
K f i , o  = -- 71 sin t + v (fl,o + 4f0,l + . . .> ; 

(ii) when a(x) has a finite number of Fourier components, a reduced, but still 
infinite number of fu occur on the right-hand side of (2.7); 

(iii) when a’(x) = a’(n - x), i.e. the back is anti-symmetric, we see, for, example, 
that (2.10) simplifies and, in general, the right-hand side of (2.7) will again contain a 
reduced number of fi,,. 

Before considering (2.7) in detail, there are two general points that need to be 
enunciated that we will need in the later discussions. 

The first concerns the uniqueness of physically acceptable solutions of nonlinear 
wave equations in the presence of weak shocks. For shocks of arbitrary strength, 
uniqueness can be demonstrated on the basis of entropy, stability or viscosity argu- 
ments, the choice being usually dictated by technical considerations. For the weak 
shocks considered in this paper, a trivial one-dimensional stability argument shows 
that perturbations to a constant-velocity shock can only die away from the shock if 
it is compressive. Hence this criterion will be used to select weak shocks throughout 
the rest of this manuscript. 

Our second general point concerns the two-dimensional intersection of two straight 
shocks of different families (as discussed in Liepmann & Roshko 1957). When 
such shocks have arbitrary strength, several different downstream configurations are 
possible but, in the weak shock limit, the vortex sheet or slipstream shed from the 
intersection point is of second order in strength compared to the shock strength. 
Hence, when we encounter such intersections later in this section, we will assume the 
shocks pass through each other without change of strength and without creating any 
new discontinuity. 

We now return to (2.7); there are several limiting cases that we will need as reference 
points before we can make any general statement about the response. One immediate 
observation is that as a0 gets large with v # 0, we move away from the nearly square 
resonator and (2.7) implies that fn,m - O( l/ao) for (n,  rn) # ( L O )  and f1,o satisfies (1.2) 
to leading-order. 
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2.1. The limit v + 0 
When v = 0, (2.7) collapses into Chester's equation (1.2) for fl,o. This equation 
must be solved under the conditions that f1,o is periodic and, since 90 is the velocity 
potential, f ~ , ~  is continuous, together with the restriction that any discontinuity in f;,o 
corresponds to a compressive shock. The unique solution for 111 < 1' = 4 [ ( y + l ) / ~ ~ ~ ] ~ / ~  
is given by 

4 cosit, -It < t < t;, 
f k o  + & = (n(y  + l ) ) l / *  { -cos;t, t; < t < It, 

where t; is given in terms of 3, by 

sin ti. 

(2.11a) 

(2.11 b) 

When we now consider v to be small and positive, we see from (2.7) that, for 
1 = 0(1), f1,o - 0(1) but all the other fn ,m are of O(v). Hence we write 

fn,m = an16mofA:i + vf:$ + . . . , 
to give that fiyi satisfies (2.11) and 

1 "  
712 

= - [ kn R(o)(x,t')(-l)Pm cospnxcospAn,,(t' - t)dxdt', (2.12) 
p=l 

where R(')(x, t )  = uiy( t  + x) - fiyJ(t - x) ]a ' (x ) .  Note that the first term on the right- 
hand side of (2.7) has no effect at this order, so the solutions considered throughout 
this subsection are independent of the choice of t10. The effects of the geometry can 
now be considered in terms of 

(i) the modulation of the one-dimensional solution described by the linear equation 
(2.12) with (n ,m)  = (1,O) and 

(ii) the excitation of cross-wavetrains which are described by the linear equations 
(2.12) with (n ,m)  # (1,O). 

To discuss the modulation of the one-dimensional solution, we write the shock 
location as 

t* = t; + v t ;  + .  . . ,  
and solve a perturbed free boundary problem for fi,o. Thus the continuity condition 
I f l , O ]  = 0 implies 

rr;;i1 = -t;viy1, (2.13) 

where square brackets denote jumps from t; - 0 to t; + 0. We can minimize the 
algebraic complexity by choosing the special case a'(x) = 2x, in which case we can 
integrate (2.12) for (n ,m)  = (1,O) to give 

-TC < t < ti, 
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FIGURE 4. Plot of t i  against t; where the shock is located at t’ = ti + vt;. 

and 

Hence f$  is periodic if 

and we can use (2.13) to find t; .  The result is plotted in figure 4 for y = 1.4, in which 
the singularity as 11) -+ I‘ indicates that an inner expansion is needed to describe 
the way in which the shock regime in the shock diagram shifts slightly as v increases 
from zero (see figure 3). It can also be shown that the strength of the perturbed 
discontinuity in fly! + vfi;! decreases for 1 > 0 and increases for 1 < 0 in accordance 
with this shift in the shock regime and this behaviour applies qualitatively to more 
general u(x) (Waterhouse 1995). 

When we come to illustrate the ‘cross-wavetrains’ fn,m for (n,m) # ( l ,O) ,  it is 
convenient to revert to the representation (2.3) and write 

and also to write a(x)  in terms of its Fourier series (2.4). To avoid undue complications 
we only show the results corresponding to the second term in the Fourier series for 
u(x) by taking a(x) = cosx. The other terms can be treated similarly. In this case, 
with 1 - 0(1), (2.12) gives 

1 (0) 1 fit/ = -(uTi cos t + b,,o sin t ) ,  f $  = -(uyi cos 5t  + b 3  sin 5t), (2.14) 
21 201 

and so on where fL:$ = 0 unless An,m - n = 1. We soon see that as n2 + m2 + 00, 

f$$ - (n2 + m2)-5/2,  but, more importantly, the lowest-order cross-wavetrain is a 
purely harmonic response with an amplitude that decreases for higher wavenumbers, 
even though we are in a situation with a degenerate spectrum. 

However, there is one interesting regime in which the degeneracy has a dramatic 
effect, as can be discerned from (2.14). This is when I is so small that a rescaling 
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of (2.7) is necessary in order to keep the nonlinearity in balance with the detuning. 
In fact we can see the existence of a fine detuning band near /z = 0 on physical 
grounds by noting that the primary forcing of O(E) produces a primary response of 
O(E'/~), and hence a cross-wavetrain forcing (due to the interaction of the O(VE' /~)  
geometry variation with this response) of O(vs ) ;  then, because of the degeneracy of 
the fundamental, the cross wavetrain response is of O(vd2).  Indeed, inspection of 
(2.7) shows that we need to write 

1 = v"22 , f n , m  = v1/2g!*;?, + . . . , 
in order to retain the nonlinear terms in the limit v --f 0. This leads to 

(1)' (1)" + (Y + l)gn,mgn,m 
1 "  2 n n  

R(O)( X, t')( - l)pm cos pnx cos t' - t)dx dt', (2.15) =-5.I 712 .I 
for all (n,m) # ( l ,O) ,  with fl.0 given by (2.11~) and, from (2.11b), 

We now have the possibility of a much more interesting cross-wavetrain response. 
Equations (2.11~) and (2.15) give 

(2.16~) 

(2.16b) 

and so on for higher-order wavetrains, where c1,c2 are constants. Consideration of 
these expressions shows that discontinuous solutions for g$ occur for 1x1 < 1.3(y+1)1/4 
and for g::: when 1x1 < 0.2(y + l)1/4. To highlight this we consider the case 2 = 0, so 

and so on, where the interaction of the shocks in these solutions with that of the 
primary wavetrain has been assumed to create no new discontinuities as explained on 
page 328. We illustrate this case, plotting A,  (which is proportional to the pressure) 
at t = -n/4 for y = 1.4 in figure 5(a) for v = 0 and figure 5(b) for v = 0.2 (with just 
the first three wavetrains). The f4,3-wavetrain can just be seen and the introduction 
of further wavetrains has a negligible effect. 

Consideration of other forms of a(x) that contain just a finite number of Fourier 
components confirms that in all cases the primary wavetrains (fl,o and fo,l) are much 
larger than the higher-order wavetrains. 

In this parameter regime, we can carry out an analysis in the same spirit as that on 
page 324 to see that each fn,m is of O(l/v) except in certain thin regions when there 

2.2. The limits 1, v -+ 00 
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FIGURE 5. Plot of A, for /z = 0, a(x) = cos x and (a) v = 0, ( b )  v = 0.2. 

is a ‘subresonance’. Hence we propose that as A,v -+ 00 with A = O(v) 

Now it is straightforward to see that if, for example, a(x) = a. + a1 cosx, 

(2 .17~)  

Hence the first mode in the primary wavetrains blows up close to the perturbed 
eigenvalues, or ‘spectral lines’, given in the shock diagram by 

(2.18) 

A rescaling similar to that employed in Ockendon et al. (1993) shows that as we 
approach the detuning range 1 + Ev = X V - ’ / ~ ,  where E = CIO - (a: + we find the 
Duffing-like response 

R = --a0 * (a; +a?) 112 ] v. [ 

f l , o  = A V ’ / ~  sin t + o(~-’ /~) ,  
fo , l  = - - - A v ’ / ~  sin t + o(~-’ /~) ,  

- 
a 

a1 

where 

A3 1 + -  =-.  ( :J : A ( E”) (Y + 
AA 1 + 3  -F (2.19) 
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-4 -2 0 2 

1 
4 6 

A 
FIGURE 6. Shock diagrams showing, for a(x) = CIO + cosx and y = 1.4, the interface between shock 
and continuous solutions in the cases ( a )  C(O = 0, (6) a0 = 1 and (c) EO = 10. In (a), there are shocks 
in the longitudinal direction between the solid lines and shocks in the transverse direction between 
the dashed lines. In ( b )  and (c), shocks are found in between the solid lines and the dotted lines 
represent the spectral lines (2.18). 

As t 00, the larger-amplitude response grows from O(V' /~)  to O(v) and the other 
modes re-enter the solution and shocks are possible. The situation is reminiscent 
of the large imperfection limit of the thin resonators discussed on page 324 except 
that, even though there is only one harmonic in a(x), there are two fingers in whose 
neighbourhood (2.19) holds. This is shown in the large-v portion of the shock diagram 
figure 6(a)  which illustrates the case a0 = 0, a1 = 1 and is drawn accurately; the 
solution within these fingers contains shocks of comparable amplitude travelling in 
both the x- and y-directions. Figures 6(b)  and 6(c) show the cases a0 = 1, a1 = 1 and 
a0 = 10, a1 = 1 schematically to indicate how the one-dimensional Chester response 
is retrieved as a0 -+ 00. When a(x) contains higher Fourier coefficients there are 
more fingers in the shock diagram; the details can be found in Waterhouse (1995), 
where it is shown that the first three modes in the primary wavetrains dominate the 
leading-order terms in (2.17) for all I I  and v. 

2.3. An iterative procedure for  v - 0(1) 

Let us now return to (2.7) for v - O(1) so that no obvious analytical simplification is 
possible. We recall that the limiting solutions found in 52.1 and $2.2 have a recurring 
theme in that, in all cases, modes associated with the two primary wavetrains, f l ,o  and 
fo, l ,  have dominated the solution. Thus we propose the following iteration scheme: 
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03 277 x 

+ 5 1 l R(i)(x, t’)(-l)pm cospnx cospA,,,(t’-t)dx dt’, (2.20) 
p=l 

where ft;tr’) is the (i + 1)th approximation to fn,m and R(’) is the expression found for 
R by using the approximations f t k  for the fn,m. We take as our initial approximation 

4% Y ,  t )  = SiptCt & x) + f g ( t  k Y ) ,  

so our starting values for the fn,m are 

f::A == 0, (n,m) # (LO) or (0, I), (2.21) 

where fyd and f f ]  satisfy (2.7) with f n , m  ((n,m) # (1,O) or (0,l)) formally set to zero, 
namely 

Cgf(0) - 1 
I,o - -; sint + [a’(t’) - u’(n - t’)]fr{(t + 2t’)dt’ 

+: In ~ ’ ( n  - t’)vr/(t - t’) - f f [ ( t  + t’)]dt’, (2.22a) 
71 

We may estimate the rate of convergence by noting that akp and aop are O(l /k3)  
for continuous solutions and O(l/k2) for shock solutions as follows. Consider the 
contribution from f$ or ffi to the right-hand side of (2.20) for i = 0. This feedback 
term in the equation for fLfA contains a term involving U(~Z+,Z)I/Z,~ from the fij- 
wavetrain. Hence, bearing in mind the definitions (2.3b) for fn,,, and the size of the 
ak,O, it is consistent that f,$, N O(A;i) for continuous solutions and f$tA - O(A;:) for 
shock solutions. This argument indicates that the higher-order wavetrains have an 
amplitude that is smaller numerically than the primary wavetrains by a factor of at 
least (n2 + m2)-2. 

We now demonstrate the effectiveness of this iterative procedure by applying it to 
the case u(x) = CIO + a1 cosx, where we have already found that the cross-wavetrains 
are described by (2.12) and (2.15) when v -+ 0. We consider the first step in the 
iteration where (2.22) gives 

These equations can be solved using an approach similar to that of Chester (1994) 
(see Waterhouse 1995) and for v small, the range for shocks emerging in the f0,’- 

wavetrain agrees with the predictions of $2.1. The algebra is very complicated and 
we only carry out a full analysis for the special case of ‘extreme degeneracy’ when 
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" I  > ~=2 .4  
:; 
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FIGURE 7. Response diagram showing, for a(x) = cosx and y = 1.4, the response where there the 
dashed part of the curve indicates a shock in either direction. 

a0 = 0 and a1 = 1 to find figure 6(a) which shows the different parameter regimes in 
the shock diagram with the now familiar shock response in fingers near the perturbed 
eigenvalues 1 = +-v. In between the solid lines (in the same sense as in figure 3) we 
find a shock in the fl,o-wavetrain and in between the dashed lines a shock in the 
fo,~-wavetrain. As in the case when v is small, we have neglected any discontinuities 
that might be generated by the shock intersection. As pointed out earlier this shock 
diagram is different from its one-dimensional equivalent in that there are now two 
fingers associated with the introduction of one harmonic in a(x). This is due to the 
coupling between the two wavetrains, while the symmetry about the line 1 = 0 in this 
case is just a consequence of taking a(x) = cosx. A schematic of the shock diagram 
we expect for a0 = 1 , l O  and at = 1 is shown in figures 6(b) and 6(c) to illustrate, for 
v - 0(1), how the one-dimensional Chester response emerges as a0 -+ co. In these 
diagrams, the dotted lines are the spectral lines (2.18) and we recall, from (2.7), that, 
as a0 -+ co, f0 , l  - O( l/ao) and the longitudinal wavetrain dominates for all 1, v as a0 
grows large. 

To illustrate the response we recall that At is proportional to the pressure in the 
gas and that A,(O, 0, t) = 2(f?{ + flp1') so we take as a typical amplitude 

and this is plotted in figure 7 against the detuning for various values of v. This 
choice of A, also allows us to compare figure 7 with figure 2. Although there is no 
dispersion in the former, the resonant peaks are at similar locations but are distorted 
by dispersion in figure 2. The two Duffing-type branches correspond to the growth of 
the sint term in the expansions for f1,o and f ~ , ~  and the right-hand branch matches 
very well with the formula (2.19) even for values of v as small as 2. In figure 8 we 
plot A,  at t = -n/4, for 1 = 0, v = 1 which can be compared to figure 5(b) and we 
see the growth of the fo,l-wavetrain and a change in its phase. 

Proceeding to the next stage of our iteration we have, from (2.20), f i t l  = flo;, 
f ( 1 )  - (0) ( 1 )  

0,l - fO,l ,  f3,4 = 0 and 
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0 

FIGURE 8. Plot of A,  for 1 = 0, v = 1, t = -n/4 and y = 1.4. 

and so on for the other fgi. It is possible to solve these equations and then proceed 
to the next stage of the iteration. Calculations of the wavetrains to this second order 
of approximation have been found to affect the original approximations only by a 
few percent. 

2.4. Dispersive eflects 
As mentioned in the introduction, we can only see the relevance of the above analysis 
(based as it is on the acoustic model (l.15), (1.16)) to sloshing resonance if we consider 
the effects of weak dispersion and thereby attempt to retrieve (l.l2), (1.13). To do 
this we note that if we had considered the shallow water problem (1.19) and (1.20) 
instead of the acoustic problem we would have found that (2.7) is modified by the 
strength of the forcing becoming 2/z and that Vfn,m is now 

(2.23) 

We can now retrieve the result in $1.3 on the deep water limit of this shallow water 
solution by letting K -+ co in (2.7) with the modifications just discussed. Firstly, we 
note that the shallow water limit of (1.12) and (1.13) as h -+ 0 gives 

4 - ~ ~ / ~ [ A c o s x s i n ( t + % ~ ) +  Bcosysin(t+Q2)], (2.24) 

1 2 (iv) Vfn,m = - 3  K f,,, + (i - fi,m + 3fk,,f;,,. 

with sinH1 = sin92 = 0 and 

9 
- = &A - -A3 - $AB2 + ~da2A cos 91 - v ~ c ~ I  B cos 92, 
77 ( 32h2 

9 
0 = &B - ---B3 - $A2B + ZV~GIOB COS& - V ~ C ~ ~ A C O S ~ ~ ,  ( 32h2 

where ao, al  and a2 are the Fourier coefficients defined in (2.4). Using the shallow 
water scalings of $1.4 and scaling A and B as 

A = K2/3El/6A* B = K2/381/6B' 
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yields 

(2.25a) 1 4 
- = ( ~ K ~ ~ ~ A '  - 9A* '  32 + V K ~ / ~ C ( ~ A *  cos 81 - V K ~ / ~ C ( ~ B '  cos 0 2  
?-c 

0 = /2K2/3B* - &B" + 2VK a0 CoS 02 - vK2/3alA* COS 81 (2.256) ( 2 / 3  

plus O ( E ' / ~ K ~ )  terms, where we have written Ad = /2&-'16, vd = ve- ' / ' ,  relating the 
deep water scalings to the shallow water scalings. To consider the deep water limit 
of (2.7) with (2.23) as K + co, we recall that the shallow water depth is O ( E ~ / ~ )  and 
the detuning range is 20 - O ( E ' / ~ ) .  To match to the deep water scalings we require 
K - O ( E - ' / ~ )  and A - O ( E ' / ~ )  (so that we are in the detuning range Lo - O ( E ~ / ~ ) )  and 
hence we take the limit as K --f co with / 2 ~ ~ / ~  - O(1). Similarly we require v ~ ~ / ~  - 0(1) 
for the correct scaling of vo and we expand the f n , m  as 

fn ,m = K 2 / 3  pg + K - 2 / 3  f:;; + K - 2 f ( 2 )  n,m + . . . v n ,  4. 
Solving the O ( K ~ / ~ )  problem gives 

fLog = An,, sin ( t  + On,m) ~ ( n ,  m). (2.26) 

Solving for fifi and then applying the Fredholm Alternative to the fL$ problem gives 
sin = 0 and 

(2.27) 1 2/7C = ( 2 K 2 l 3  - + C ~ ~ V I C ~ ' ~ )  A1,o COS 81,o - alvh-2/3Ao,l COS 80,1, 

o =  ( A K 2 j 3  - 9 8 ~ 0 , 1  + ~ C C ~ V K ~ / ~ )  cos - a l v ~ ~ ' ~ ~ l , o  cos81,0, 

O = A n , m ,  (n,m) # (1 ,O)  or 

Finally, noting that the leading-order velocity potential is now 

4 - 2 ~ l / ~ [ A ~ , o  cos x sin ( t  + 01,o) + A o , ~  cosy sin ( t  + do,,)], 

we see that (2.27) matches (2.25) if we write 2A1,0 = A*, 2A0~ = B', 81,o = 01 and 
00,l = 02. 

In this section we have presented a framework for two-dimensional oscillations in 
the simplest parameter regime vo = O ( E ' / ~ )  where the detuning, geometrical effects 
and nonlinearity balance when second-order terms are considered. We have found 
that the degeneracy induced by the condition ho /L  = 7~ causes the response in the 
cross-direction to be much stronger than in non-degenerate cases. This phenomenon 
had already been noticed for deep water in (1.13), with which the results of this 
section are consistent. However, as was the case for the thin resonators considered in 
Ockendon et al. (1993), we can make certain less precise statements about the regime 
1 >> vo >> and this is one of the generalizations we consider in the next section. 

3. Generalizations 
3.1. Stronger geometric variations 

Having established a basic theoretical framework for the regime vo = O ( E ' / ~ ) ,  we could 
attempt to bridge the gap to the regime vo = O( l), where we almost always expect a 
single mode response, in the same spirit as described for thin resonators at the end 
of 51.3. Indeed the similarities that have emerged between the effects of increasing 
geometric imperfections in thin resonators and in nearly square resonators for the case 
vo = O ( E ~ / ~ )  suggest that some of the arguments of Ockendon et al. (1993) could also 
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apply to the progressive destruction of degeneracy as vo increases. However, it soon 
becomes apparent that the details are even more intricate than those mentioned in 
Ockendon et al. (1993) so we will restrict ourselves to some very general observations 
here. 

Let us now consider what happens when vo >> E ' / ~ .  The simplest regime where this 
holds is when vo - O ( E ' / ~ )  and in this case we proceed as in $1.3.2, but now expand 
cp as cp - E - ' / ~  cpo + ~ - ' / ~ c p l  + cp2 + . . ., where cpo still satisfies (1.15) and hence can be 
written as (2.2). However, at second order, we now find that the ffl ,rn must be such 
that 

1 ecln R(x,t')(-1)prncospnxcosplfl,,(t' - t)dxdt' = Tf,,,, 2aom2 I' (3.1) 
7c2 p=l  42,m 

for all (n,m), for periodic solutions to be possible. When we consider this set of 
conditions by writing the fn,rn and a(x) as Fourier series, we find an infinite set of 
restrictions on the coefficients of these series which will, in general, force all the f f l , rn  
to vanish to lowest order and thus rule out any anomalous large-amplitude response 
over and above a single mode with a dimensional amplitude of O ( E ~ / ~ O L ~ ) .  However, 
there may be exceptions when the ai obey certain very special conditions. This can 
best be seen by assuming the perturbations to the natural frequencies caused by the 
back variations are such that 

as vo -+ 0, where n2 + m2 is the square of an integer, f denotes the split of the 
natural frequencies due to the degeneracy and w ; , ~ ) ~  are functions of the Fourier 
coefficients ai. For the case considered in $2, when vo - O ( E ' / ~ ) ,  we find that the 
detuning lo - O ( E ' / ~ )  balances with the  VOW^,^)^ terms along spectral lines such as 
(2.18) and this balance is associated with the sub-resonant growth of the associated 
modes. Now, for the regime considered here ( V O  - O ( E ' / ~ ) ) ,  the detuning will only 
balance with the V ~ W ; , , , ) ~  terms and these sub-resonances will only be possible if 
the corresponding VOOW&,,)~ vanish (i.e. when the ai satisfy certain constraints). Thus, 
unless all the o : , ~ ) ~  vanish, (3.1) will mean that some of the modes in the ffl,* must 
also vanish. Note that these special cases, where large-amplitude responses occur, do 
not correspond to the extension of the fingers found in $2 but are associated with 
the emergence of these fingers much further up the vo-axis as illustrated in the shock 
diagram figure 9. If w : , ~ , ~  do not vanish, we are effectively far from resonance with 
qo = 0 and cp - O ( E - ' / ~ ) .  

We note also that the emergence of these special large-amplitude responses is 
critically dependent on CIO. For a0 # 0, we find that (3.1) are only satisfied when 
f f l , rn  = 0, (n, m) # (1,0), and fl.0 may contain a number of modes depending on the 
other ai as in Ockendon et al. (1993). For = 0, however, it is possible to find a 
response containing a number of modes in wavetrains other than the longitudinal 
wavetrain just as long as the other ai are suitably chosen. This difference can be 
seen by recalling that voao is the average of the back variation and, whenever this 
quantity is greater than O ( E ' / ~ ) ,  we are sufficiently removed from the degenerate case 
of a square tank that, to leading order, we have a one-dimensional response. 

When we finally attain the regime vo - 0(1), we can see that a generalization of 
the above arguments suggests that there will only be a non-trivial response when the 
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h l h  

FIGURE 9. Shock diagrams showing subresonant growth of the first mode in the fl ,o and fo,, 
wavetrains along fingers in the detuning range 10 - O ( E ’ / ~ ) :  (a) vo - 0(e1’*), where the detuning 
balances with (b)  vo - O(E‘/~), where the detuning balances with v&o&o)2 and o:,~)~ = 0. 
ln  both cases the dashed line indicates the spectral lines. 

distance of the a,,,,, from a commensurate set is O ( E ~ / ~ )  and this will require a very 
special geometry. 

3.2. Spectra with other degeneracies 
The discussions in $2 and $3.1 have been solely concerned with the two-dimensional 
response of a nearly square resonator, so that the eigenvalues are nearly n2 + m2 and 
all are nearly degenerate. We can destroy many of these degeneracies by the artifice of 
introducing three-dimensionality and putting a slightly uneven ‘lid’ z = do( l+ph(y))/L 
on the resonator. Then, for do/L << dI4 and j? - 0(1),  we can adapt the analysis 
of Ockendon et al. (1993) to find a quasi-two-dimensional problem for the velocity 
potential q(x ,  y, t) - ~ - ‘ / ~ c p o  + cp1 + . . ., 

q o X  = O  on x=O,n , q o y  = O  on y = o , n ,  J 

and 

Y %Yt 
Bh’ 

m x x  + 4 n l Y Y  + j q p l ’  = cp l t t  + Aqott  + 2qox40x t  + 2qo 

+(Y - l )cpotqot t ,  
c p l x  = O  on x =0, 
(pix = sint on x = n, 
(ply = O  on y =0 ,  

(piy = V.n[cpoxa’(x) - cpoyYa(x)] on y = n. 

The eigenvalues a,,,,,, now satisfy the eigenvalue problem 

(3.2) 

( 3 . 3 ~ )  
(3.3b) 
(3.3c) 
(3.3d) 
(3.3e) 

g:,,,, = 0 on y = O,n, 
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V 

FIGURE 10. 
h 

Shock diagram for the special case of one transverse mode. 

with corresponding solution 

n=O m=1 

and, as usual, we have written 

fl,o(z) = !j C(an,o cos nz + bn,O sin nz). 

Now let us suppose we can select an h(y) such that coo,] = 1 and no other con,, ( n  # 0) 
is commensurate with it.? Then we only need n = 0,m = 1 in the summation in (3.4) 
and the application of the Fredholm Alternative to (3.3) gives 

n 

sin t ngl g{,1 ( ~ ) a i  v 
2 v ; 0  + (Y + l)f;,of’;,o = -7 - ( c ~ , ~  cos t + dl,o sin t )  

+ 1‘ fi,o(2x + t)[a’(x) - a’(n - x)ldx, ( 3 . 5 ~ )  

(3.5b) 

where 

go,1(Z)[l + Ph(.)l 
> g2= 72 

1 + P 4 n )  
gl = 

1‘[1 + Bh(Y)ldY 1 g;,l(Y)[l + Ph(Y)ldY* 

We can only easily see what happens in the symmetric case a’(x) = a’(n - x) and we 
first consider the case a0 = 0. Then ( 3 . 5 ~ )  has discontinuous solutions for 

and we plot the shock regime in the shock diagram in figure 10. Equations (3.5) 
reveal three different classes of behaviour depending on the parameter 3L/v2. First, 
when v 2  << A, the geometric imperfection in the rear wall is so weak that co,] and 

are negligible and we return to the one-dimensional response. Also, when v 2  - 2, 
the primary and transverse wavetrains are both of the same order of magnitude as in 

t Using a numerical method (Nag Fortran Library 1990) we found that 1 + pk(y) = 
[cos( 1.04~ + 3)I-l yields a,,m = 1 for the case n = 0 with the next few w , , ~  being non-commensurate 
and hence a function of this general shape may be a suitable example. 
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the case v = O( 1) in $2. However, we have an interesting anomalous response when 
v 2  >> A, because then f l , ~  - O(A/v2) and the transverse wavetrain (in the y-direction) 
dominates. Indeed, from (3.5), we find, in both shock and continuous regions, that 

2 
a1,o - 0 , h , o  - -A/v , CO,l - 0 2 do,1 - -1 /v ,  

so that, as 3, -, 0, the wavetrain in the x-direction (which may contain a shock) 
is of O ( A / v )  lower than the lowest-order transverse wavetrain (which is smooth). 
This is due to the amplification of the relatively small primary wavetrain resulting 
from resonance with the rear wall geometry which causes a forcing at a transverse 
frequency (that is, in turn, dictated by the shape of the ‘lid’). Thus, although figure 10 
suggests some similarities with the ‘fingers’ of figures 3 or 6(a), where all the purely 
transverse modes are commensurate and degenerate, the behaviour near A = 0 is very 
different, with the single transverse mode now dominating for small A and v 2  >> i; 
also, of course, the resonant response only ever contains shocks propagating in the 
primary (x) direction. 

For MO # 0, the transverse mode dominates close to the line A = g2g{,,(n)naov so 
that the finger near A = 0 is retained in this case. The effect of the transverse mode 
dominating will be to cause any fingers close to the line A = g2g{,,(n)naOv to becomes 
thinner as the longitudinal motion becomes weaker. 

We may also remark that if other eigenvalues rather than just the fundamental are 
degenerate, then, away from A = 0, the scenario suggested by figures 3,  6(a) and 10 
will persist, with shock fingers spilling out into the shock diagram. 

3.3. The effect of other physical mechanisms 

The principal mechanisms that we have neglected in all our models are dissipation 
and, in the case of sloshing, surface tension. It is relatively easy to take the latter 
into account by introducing the terms [ij,,, + ijyr] and osA,,,, into the right-hand 
sides of (1.18g) and (1.20~) respectively, where os measures surface tension. Thus the 
zero-dispersion limit merely becomes ti L 80, rather than ti -+ 0 and, as long as 
K > g o s ,  i.e. the depth is greater than the ripple depth, all our previous analysis 
applies qualitatively. Nonlinear effects in sloshing tanks at depths less than the ripple 
depth do not appear to have been analysed asymptotically. 

As far as the effects of dissipation are concerned, we have primarily neglected them 
thus far on theoretical grounds in order to facilitate our analysis of nonlinear and 
dispersive phenomena. In practice viscous action will be important in all the problems 
we have described and we have implicitly acknowledged this in focusing attention only 
on periodic responses at the driving frequency. The precise mechanism for viscous 
action will of course vary from problem to problem, but in high Reynolds number 
situations it will be concentrated in viscous boundary layers on the walls of the tank or 
resonators. It is much easier to model bulk viscous action than the effect of boundary 
layers; as demonstrated in Ockendon et al. (1986) the introduction of a term ~ ~ / ‘ p x  
into Duffing’s equation (1.1) or pf’ into Chester’s equation (1.2) can be handled quite 
easily and it simply results in a ‘round off’ of all the response diagrams we have 
presented. A more realistic model for two-dimensional boundary layer dissipation 
has been proposed in the form of a linear time convolution by Chester (1964), but 
this is quite difficult to handle asymptotically, as shown in Chester (1964, 1968), 
Keller (1976) and Ockendon & Ockendon (1973). Even more difficult is the nonlinear 
history dependence that would result from taking a full boundary layer model. A 
further complication in our configuration would be that the dominant boundary layer 
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action would probably be confined to three-dimensional boundary layers near the 
edge of the tanks or resonators. 

3.4. Further remarks 

The configurations that have been studied hitherto by no means exhaust the possibil- 
ities for multi-dimensional resonant fluid responses. For example, although the case 
of sloshing tanks of infinite depth is a trivial special case of what we have described 
earlier, tanks of semi-infinite horizontal extent have continuous spectra and hence 
offer quite new possibilities when being resonated near a cut-off frequency (Ockendon 
& Ockendon 1973; Barnard, Mahoney & Pritchard 1977; Kit, Shemer & Miloh 1987; 
Kantzios & Akylas 1988). 

There is also the possibility of three-dimensional motions when ‘cross-waves’ are 
excited by parametric resonance (Garrett 1970; Miles 1988; Tsai, Yue & Yip 1990); 
indeed this instability mechanism would be important in some of the problems listed 
above in $2 when the wavemaker is oscillated at twice the frequency of a harmonic 
in the transverse direction. We expect our methodology to apply to such solutions, 
although preliminary investigations suggest the details will be much more complex 
than those of $2. Such parametric resonances also occur when a tank is oscillated 
vertically (Faraday 1831; Ockendon & Ockendon 1973; Miles 1984); in both cases 
we would expect the nonlinearity to enter the analysis in the same way as proposed 
for the hybrid “Mathieu-Duffing” equation in Ockendon & Ockendon (1973). 

Finally, we have made no explicit mention of fully three-dimensional acoustic 
resonators, but we see no reason why they should not be described by relatively 
straightforward generalizations of the asymptotic representations listed here, with, for 
example, two families of transverse shocks being capable of being excited in a nearly 
cubical resonator. 

4. Conclusions 
We have described some of the salient features of the multi-mode response of fluid 

resonators near their fundamental frequency. We have assumed that the amplitude 
is limited primarily by nonlinear effects and that dissipation is negligible except in 
that it filters out responses that are not periodic with the same period as the forcing 
mechanism. 

Usually the response is the familiar one in which the waveform is approximately 
proportional to the lowest eigenmode, with an amplitude related to the detuning in 
the same way as for a Duffing oscillator. This is because the effects of geometric 
asymmetry and dispersion usually engender a non-degenerate and non-commensurate 
spectrum. However, there are special situations when the spectrum has an infinite 
number of nearly commensurate eigenfrequencies that can all be excited simulta- 
neously. Normally such a configuration can be modelled by the well-known one- 
dimensional Chester theory, or its extension to nearly one-dimensional resonators. 
However, this excludes the interesting case in which the spectrum may be nearly 
degenerate, for which a nearly square two-dimensional acoustic resonator is the 
paradigm. 

For those anomalous acoustic resonators that we have been able to analyse, our 
principal result is that as geometric imperfections are increased to move the spectrum 
further away from commensurability and/or degeneracy, a Duffing-like response 
becomes more and more likely except in narrow regimes (fingers) in the shock- 
diagram, i.e. the parameter plane of the imperfection and the detuning. In these 
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fingers, shocks can often exist, sometimes propagating only in the direction of the 
external forcing, and sometimes transverse to and even dominating the response in 
that direction. 

We have also been able to include dispersion in the theory and hence relate our 
acoustic predictions to those for sloshing in horizontally oscillated rectangular tanks. 
Then the spectrum for shallow water sloshing may be nearly commensurate, so 
that many one-dimensional modes can respond to the forcing. Nonetheless, for the 
degenerate case of a rectangular tank of nearly square cross-section, forcing parallel 
to one pair of vertical walls means that a significant response can occur in the 
perpendicular direction. This transverse excitation also occurs for deep water when 
the cross-section is nearly square. 

In conjunction with the results of Chester (1994), Ellermeier (1994) and Ockendon 
et al. (1993), our predictions suggest that the phenomenon of ‘shock fingers’ is 
common enough to be observable in experiments on gases and possibly shallow liquids, 
although it may be easier to discern the occurrence of perpendicular wavetrains in 
nearly square tanks of deep water. 

Appendix. Coefficients in (1.13) 

H(h) = 

J(h)  = 

K(h) = 

L(h) = 

M(h) = 

5(h) = 

-&sech2hcosechh(9 + 15sinh2h - 8sinh6h), 

8 (8 cosh h sinh $h - 4 sinh h cosh $h) sinh h cosh3 h’ 

- a(x) cos xdx, 

- 1 J(h) 

sinh h + hsechh 
?I 

sinh + hsechh 1’ a(x) cos 2xdx, 
71 

sinh h + hsechh 1’ 
-29,,hcosh5h sinh ah + 52cosh4h cosh ,,hh sinh h 

+9,,hcosh7 h sinh ,,hh - 40 cosh ,,hh cosh’ h sinh h 
-20 sinh h cosh6 h cosh ,,hh + 3 1 ,,h sinh ,,hh cosh3 h 
+8 cosh ,,hh sinh h - 11 ,,h cosh h sinh ah. 

a(x)dx, 
71 
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